body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; line-height: 1.6; color: #333; max-width: 900px; margin: 0 auto; padding: 20px; } .header { display: flex; align-items: center; margin-bottom: 20px; } .logo { height: 40px; margin-right: 15px; } .lesson-title { color: #2b6cb0; font-size: 28px; margin-bottom: 10px; } .video-container { background-color: #f7fafc; border-radius: 8px; padding: 20px; margin-bottom: 25px; border: 1px solid #e2e8f0; } .video-placeholder { background-color: #e2e8f0; height: 300px; display: flex; align-items: center; justify-content: center; border-radius: 4px; margin-bottom: 15px; } .content-section { margin-bottom: 30px; } h2 { color: #2b6cb0; border-bottom: 1px solid #e2e8f0; padding-bottom: 8px; } .practice-container { background-color: #f0fff4; border-radius: 8px; padding: 20px; border: 1px solid #c6f6d5; margin-bottom: 25px; } .question { font-weight: bold; margin-bottom: 15px; } .answer-choices { margin-left: 20px; } .choice { margin-bottom: 10px; cursor: pointer; padding: 8px; border-radius: 4px; } .choice:hover { background-color: #ebf8ff; } .feedback { display: none; padding: 15px; border-radius: 4px; margin-top: 15px; } .correct { background-color: #c6f6d5; border-left: 4px solid #38a169; } .incorrect { background-color: #fed7d7; border-left: 4px solid #e53e3e; } .explanation { margin-top: 10px; } .hint-button { background-color: #ebf8ff; color: #3182ce; border: none; padding: 8px 15px; border-radius: 4px; cursor: pointer; margin-top: 10px; } .hint { display: none; background-color: #ebf8ff; padding: 15px; border-radius: 4px; margin-top: 15px; } .next-button { background-color: #4299e1; color: white; border: none; padding: 10px 20px; border-radius: 4px; cursor: pointer; font-weight: bold; margin-top: 20px; } .method-box { background-color: #ebf8ff; padding: 15px; border-radius: 8px; margin: 15px 0; border-left: 4px solid #4299e1; } .example-box { background-color: #f0fff4; padding: 15px; border-radius: 8px; margin: 15px 0; border-left: 4px solid #38a169; } .key-takeaways { background-color: #fefcbf; padding: 15px; border-radius: 8px; margin: 20px 0; } .formula { font-family: monospace; background-color: #f0f0f0; padding: 2px 5px; border-radius: 3px; } .step { margin-bottom: 10px; }
Learn essential techniques for isolating variables and quantities in equations, a fundamental skill for solving SAT math problems.
Isolating a quantity means rearranging an equation to get a specific variable or expression by itself on one side.
Example: Isolate x in 2x + 5 = 13
1. Subtract 5 from both sides: 2x = 8
2. Divide both sides by 2: x = 4
Many SAT problems require rearranging common formulas:
Example 1: Solve for r in A = πr²
1. Divide both sides by π: A/π = r²
2. Take square root of both sides: r = √(A/π)
Example 2: Solve for b in a² + b² = c²
1. Subtract a² from both sides: b² = c² - a²
2. Take square root: b = ±√(c² - a²)
For equations where the target variable appears in multiple terms:
Example: Solve for y in 3xy + 2y = 10
1. Factor y: y(3x + 2) = 10
2. Divide both sides by (3x + 2): y = 10/(3x + 2)
The formula for the surface area of a cylinder is given by S = 2πr² + 2πrh, where r is the radius and h is the height. Which of the following equations correctly expresses h in terms of S and r?
Follow these steps:
Step-by-Step Solution:
1. Start with: S = 2πr² + 2πrh
2. Subtract 2πr² from both sides: S - 2πr² = 2πrh
3. Divide both sides by 2πr: (S - 2πr²)/(2πr) = h
4. Rewrite: h = (S - 2πr²)/(2πr)
The correct answer is A) h = (S - 2πr²)/(2πr).
Note: Option C is algebraically equivalent but not in the same simplified form.