body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; line-height: 1.6; color: #333; max-width: 900px; margin: 0 auto; padding: 20px; } .header { display: flex; align-items: center; margin-bottom: 20px; } .logo { height: 40px; margin-right: 15px; } .lesson-title { color: #2b6cb0; font-size: 28px; margin-bottom: 10px; } .video-container { background-color: #f7fafc; border-radius: 8px; padding: 20px; margin-bottom: 25px; border: 1px solid #e2e8f0; } .video-placeholder { background-color: #e2e8f0; height: 300px; display: flex; align-items: center; justify-content: center; border-radius: 4px; margin-bottom: 15px; } .content-section { margin-bottom: 30px; } h2 { color: #2b6cb0; border-bottom: 1px solid #e2e8f0; padding-bottom: 8px; } .practice-container { background-color: #f0fff4; border-radius: 8px; padding: 20px; border: 1px solid #c6f6d5; margin-bottom: 25px; } .question { font-weight: bold; margin-bottom: 15px; } .answer-choices { margin-left: 20px; } .choice { margin-bottom: 10px; cursor: pointer; padding: 8px; border-radius: 4px; } .choice:hover { background-color: #ebf8ff; } .feedback { display: none; padding: 15px; border-radius: 4px; margin-top: 15px; } .correct { background-color: #c6f6d5; border-left: 4px solid #38a169; } .incorrect { background-color: #fed7d7; border-left: 4px solid #e53e3e; } .explanation { margin-top: 10px; } .hint-button { background-color: #ebf8ff; color: #3182ce; border: none; padding: 8px 15px; border-radius: 4px; cursor: pointer; margin-top: 10px; } .hint { display: none; background-color: #ebf8ff; padding: 15px; border-radius: 4px; margin-top: 15px; } .next-button { background-color: #4299e1; color: white; border: none; padding: 10px 20px; border-radius: 4px; cursor: pointer; font-weight: bold; margin-top: 20px; } .method-box { background-color: #ebf8ff; padding: 15px; border-radius: 8px; margin: 15px 0; border-left: 4px solid #4299e1; } .example-box { background-color: #f0fff4; padding: 15px; border-radius: 8px; margin: 15px 0; border-left: 4px solid #38a169; } .key-takeaways { background-color: #fefcbf; padding: 15px; border-radius: 8px; margin: 20px 0; } .formula { font-family: monospace; background-color: #f0f0f0; padding: 2px 5px; border-radius: 3px; } .step { margin-bottom: 10px; }

Isolating Quantities: Foundations

[Video: Introduction to Isolating Variables]

Learn essential techniques for isolating variables and quantities in equations, a fundamental skill for solving SAT math problems.

Understanding Isolating Quantities

Isolating a quantity means rearranging an equation to get a specific variable or expression by itself on one side.

Why Isolate Quantities?

Basic Isolation Techniques

Step-by-Step Approach

1. Identify the quantity you want to isolate
2. Undo operations in reverse order of operations (PEMDAS)
3. Perform the same operation to both sides
4. Simplify at each step
5. Check your solution

Example: Isolate x in 2x + 5 = 13

1. Subtract 5 from both sides: 2x = 8

2. Divide both sides by 2: x = 4

Working with Formulas

Common Formula Rearrangements

Many SAT problems require rearranging common formulas:

Example 1: Solve for r in A = πr²

1. Divide both sides by π: A/π = r²

2. Take square root of both sides: r = √(A/π)

Example 2: Solve for b in a² + b² = c²

1. Subtract a² from both sides: b² = c² - a²

2. Take square root: b = ±√(c² - a²)

Advanced Techniques

When Variables Appear Multiple Times

For equations where the target variable appears in multiple terms:

  1. Gather all terms with the variable on one side
  2. Factor out the variable
  3. Divide by the remaining expression

Example: Solve for y in 3xy + 2y = 10

1. Factor y: y(3x + 2) = 10

2. Divide both sides by (3x + 2): y = 10/(3x + 2)

Key Takeaways

Practice Question

The formula for the surface area of a cylinder is given by S = 2πr² + 2πrh, where r is the radius and h is the height. Which of the following equations correctly expresses h in terms of S and r?

A) h = (S - 2πr²)/(2πr)
B) h = (S - πr²)/(2πr)
C) h = (S)/(2πr) - r
D) h = (S - 2πr)/(2πr²)

Follow these steps:

  1. Start with the original equation: S = 2πr² + 2πrh
  2. Isolate the term containing h (2πrh)
  3. Divide by the remaining factors to solve for h
  4. Check your answer by comparing with the options

Step-by-Step Solution:

1. Start with: S = 2πr² + 2πrh

2. Subtract 2πr² from both sides: S - 2πr² = 2πrh

3. Divide both sides by 2πr: (S - 2πr²)/(2πr) = h

4. Rewrite: h = (S - 2πr²)/(2πr)

The correct answer is A) h = (S - 2πr²)/(2πr).

Note: Option C is algebraically equivalent but not in the same simplified form.