Displacement: s = ut + ½ at² Final velocity: v = u + at v² = u² + 2as Average velocity (uniform accel.): v_avg = (u + v)/2
F = ma F_friction = μN Work: W = F · s · cosθ Power: P = W/t = Fv
Kinetic Energy: KE = ½ mv² Potential Energy: PE = mgh Mechanical Energy: E = KE + PE Work-Energy Theorem: W = ΔKE
Torque: τ = r × F = Iα Moment of Inertia (disc): I = ½ MR² Angular Momentum: L = Iω Kinetic Energy: KE_rot = ½ Iω²
F = G(m₁m₂)/r² g = GM/R² Potential Energy: U = -GmM/r Escape velocity: v_e = sqrt(2GM/R)
Time period (spring): T = 2π√(m/k) Time period (pendulum): T = 2π√(l/g) Wave speed: v = fλ
Coulomb’s Law: F = k q₁q₂/r² Electric Field: E = F/q Potential: V = kQ/r Capacitance: C = Q/V Energy: U = ½ CV²
Ohm’s Law: V = IR Resistance: R = ρl/A Power: P = VI = I²R = V²/R
Force: F = qvB sinθ Ampere’s Law: ∮B · dl = μ₀I Faraday’s Law: ε = -dΦ/dt
Energy of photon: E = hf = hc/λ De Broglie wavelength: λ = h/p Einstein’s equation: E = mc²